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Considered is a system of linear differential equations with periodic 

coefficients and with after-effect (with time lag). The study of this 

type of systems is of interest in particular to persons working with 

automatic control systems. 

The investigation is based on methods for treating equations with 

time lag in the function space C-v0 of continuous functions proposed by 

Krasovskii [l. 21. 

It is shown that the spectrum of the operator of the monodrome 

U(o, to) does not depend on t,, and determines the asymptotic stability 

or instability of the motion x = 0. A conjugate system of differential 

equations with time advance and with periodic coefficients is con- 

structed. An explicit expression is given for the first integrals of 

the considered system (1.1) by means of the solution of the conjugate 

system. An explanation is given for the connection between the spectra 

of the operators of the monodrome of the original and conjugate systems; 

an analytic form of the characteristic vectors and particular solutions 

of these systems is obtained, which can be continued over the entire 

time-axis from - m to + m. 

It is shown that in the space of continuous functions C_ve, in which 

the solutions of the system (1.1) are considered. there can be found a 

finite-dimensional basis, periodic in t, on which the motion of the 

system (1.1) is described by a system of ordinary differential WUatiOnS 
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The theory of linear differentiat Equations 675 

with constant coefficients. In the complementary subspace, the norm of 

every solution decreases 8s an exponential function with sufficiently 

high exponent because the Spectral radius of the operator of the mono- 

drome can be made as small 8s one plesses. The last circumstance has 

application in the theory of the stability of oscillations, as well as 

in problems on optimal control in systems with delay. 

f. Let us consider a system of differential equations with delay of 

the type 

Here 

The periodic continuous functions psjoft) of time are of period o. 

The functions f, .(t, $1 
- m < t < + m; t i 

are continuous rn t and in the region -T<~\<O, 
ey are periodic in t of. period o; ro is the delay of 

the system. 

Let us denote by x(cp( 6 1, t,,, t) the solution of the system (1.1) 

with the initial function q(8) = {cp,(6), s = 1, *.., n; - T<@\<OI. 

A segment of the trajectory x(gr(@ f, tgl t +@,f will be considered 

to be an element of the solution of the system (1.1). Thus, to the 

system of equations (1.1) in the function space C_.ro of continuous 

functions on the interval (- T, 0) with norm II X( @ 1 II_To = SUP( IX,(~) I, 
. . . . b$s, 1 t f- T\< 6 <Of t h ere will correspond a system of “ordinary” 

differential equations with an operator type right-hand side 

where xtW = x(t i-6) = fxs(t +@I, s = 1, . ..) d, while the operator 

P(t) is defined in the following way 

P (i). 2 (S) = ff -3) 
dx, (@I 
-whenz<i3<0, Fk(t,5L(~)),..m,Zn(9)) whentJ=O,k=l,...,n 

> 

For a fixed t > to, an element of the solution xt(@ = %~~~~~ t to, 
t + 6) can be considered to be an image of the element qf@ E C,,e 

under some mapping 
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with the operator T(t, t,); T(t,, t,) = J is the identity operator 

Jx (f_t) s 2 (@), T (t, to) cp (*) = 2 (v (% to, t + 6) 

We shall note some basic properties of the operator T(t, to). 

1. The operator T(t, to) is linear. 

2. ‘Ihe operator T( t, to) has the property of a semi-group. For every 

t and tl it is true that 

T(t + t,, to) = T(tr + t, t) 2’ (t, to) (h>O. t >kJ (1.5) 

3. ‘Ihe operator T(t, to) satisfies the condition 

T (t + 0, to) = T (t, to) T (to t 0, to) (t > 431 VI 

Since the system (1.2) depends in a periodic way on time t, it 

follows that 

is .a solution of the system (1.2)) and, when 6 = 0, also of the system 

(1.1). 

l3ut then one can find an element qP(W of the space C-v,, such that 

rt+e = r(@(W, to, t + +), x(cp(&), t,,, to + o + 6) = Q*(@). we thus 

have 

‘Ihis implies (1.6). 

4. Setting tl = 0 in (1.5) and taking into consideration (1.6), we 

obtain 

T (t, to) T (to + 0, to) = T (t + 0, 4 T (t, to) (1.7) 

In view of (1.5) and (1.7) we have also 

xt+o (tb) = T (t + o, t) zt (8) = T (t + 0, t) T (t, to)cp (*) = 

= T (t, to) T (to + 0, to)cp (f-V = T 0, to) T (to + 0, to) T-l @v to) st (‘V 

T-l 0, 1,) a (a) = cp (*) 
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5. Let t = m, + t*, t, <t* < to + o, where n is 
Applying formula (1.6) n times, we obtain 

a positive integer. 

T (t, to) = 2’ (t*, to) T” (to + 0, 4,) (1.9) 

The operator T( to + 0, t,) will play an important role in what 
follows.* Below we shall denote this operator by the symbol U(o, t,). 

2. The operator U(0, to) = T(to + 0, t,) is completely continuous on 

the linear normed space C_T of continuous functions because it is 
bounded in view of (27.12) !ll , and it transforms continuous functions 

4W e C-7, into uniformly continuous functions ([lI , page 226, Vo1.25, 
No.1). Let us consider the equation 

(0 (0, t*) - pJ) 5 (43) = 0 (2.1) 

Here J is the identity operator, p is a complex number, and 
X(13) E c_To. Since the operator U(o, to) is completely continuous, 
equation (2.1) may have non-trivial solutions for a denumerable set of 
values of pj. ‘Ihese values are called characteristic numbers of the 
operator U(o, t,). For each pi equation (2.1) has a finite number n. of 
linearly independent characteristic vectors x (j)(9) of the operator’ 

U(o, t,). There exists a number no, which is independent of the number 
j, such that 
and the point 

nj < “0. Ihe characteristic numbers pj (j = 1, 2, . . .I, 
= 0 constitute the spectrum of the operator U(o, to). 

In the region p >r (where r is an arbitrary positive near) there Pi 
exist only a finite number of characteristic numbers of the operator 

WO, toI (see [41). 

~eore~ 2.1. ‘Re spectrum (pi) of the operator U(o, to) does not de- 
pend on to. The characteristic vectors rt(3)(@), x,:j’(4) of the 

operators iJ( 0, t) and Wo, to) that correspond to the characteristic 
number pj are connected by the relations 

s,(j) (6) = T (t, to) zto(j) (@), zl,(j) (a) = T-1 (t, to) z,(j) (9) (2.2) 

and z*(j) (8) has the form 

- 

* This operator was used by 1u.M. Repin for the investigation of equa- 
tions with constant coefficients [?I. 
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where uj(t + 4) is a periodic vector-function of period o in t; the 
function xt(j) (@) satisfies the system (1.2) not only when t b to but 
also when t < t,. 

Proof. Let xt ‘j’(@ be a characteristic vector of the operator 

O(W, to) (to is kbitrarj) which corresponds to the number Pi. The 
following identity is valid 

Applying the operator t(t, to), t > te, to the left and right sides 
of the identity (2.4), and taking into account (1.7). we obtain the 
identity 

U (w, t) T (t, ta) z,,(j) (@) E pjT (t, to) stn(j) @) (2.5) 

From (2.5) it follows that Pi will be a characteristic number, and 

%t 
(j) (6) = T(t, te)rt 

0 (. 
(j) 6) a characteristic vector, also of the 

operator U(0, t), t > to. The function 

St(j) (6) = T (t, fa) z:)-(6) 

with t > to, will also be a solution of the system (1.2). Taking into 
account (1.7) and (1.6) we obtain from (2.5) 

s& (fk) = pj *Ij) (S). (t > te) (2.6) 

Formula (2.6) implies formula (2.3) when t > to. ft is, however, 

easy to notice that rt (I) (6). determined by the formula (2.3) uhen t < to, 
also satisfies the system ~2.1). Assuming that tl = t -I- lo > to (1 an 
integer) we find that xt 

1 ( 
(J) 6) satisfies the system (1.2). where t is 

replaced by tl. . Taking into account the periodicfty of P(t) and 

%t 

(I)(@) = 
Xt+iiJf(g) = Pj 

lox (j) (#), one can verify that the function 

Xt ‘j’(6), determined by formtla (2.3), satisfies equation (1.2) when 
t < to. 

Let us suppose that xt *(6) is a characteristic vector, p* is a 
1 

characteristic number of the operator u(o, tl), while ~~(6) is a SOlU- 
tion of the system (1.2) with the initial function xt (6) at the time 

1 
tl. This solution can be continued over the entire real axis t. Hence 
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one can find a function x 
t0 

l (6) such that zt Of (0) = T-l@, t())%**(6). 

Taking into account the last formula and (1.7) we obtain, from the 

identity U(o, t1)xt1(6) E p’xt1(6), the identity U(o, to)%* O(6) 

p*xtO* (6). 
0 

'Ihus, the spectrum of the operator U(o, to) is independent of 
and the formulas (2.2) and (2.3) are valid. 

‘Ihe system of equations (1.2) has in general a denumerable number of 
particular solutions defined on the entire axis of time t. Let us assume 
that p = p* is such that the equation 

(U(0, t,) - p?Qk5(fl) - 0 

has a nontrivial solution. ‘Ihen the system of equations (1.2) will 

possess a solution of the form 

y_@gl u1 (t + -8) + (fk+yg2 u,(t+44+...+uk(t+*) 

where ul(t +ti), . . . . uk( t + 6) are vector-functions of period o in t. 

3. We suppose now that all the characteristic numbers p satisfy the 
condition 1 p. 1 < 1. It is known [31 that the spectral radius rU of the 
operator Lr(of to) is determined by the formula 

F, = lim 11 u” (CO, to) Ill’n on [- rO] when n + 00 

‘Iherefore, there exists a number 1 such that 

11 U’ (0, to) /I’_$ = Q < I on [- 7, 0] 

Let 11 T(t, toI II < K on the interval [- T, 01 when to < t <to + ol, 
t = ozo + t*, tO<t*\<t,, + OZ. ‘Iben it follows from (1.9) that 

HW, t,)II<UW*, hJII1 II u’ (WY to) II” < J-G?” (3.1) 

?he following inequality now applies 

11 T (t , t,) II_, < Ke-” (t-to)eaoz (a = - ‘y) (3.2) 

for all t > to, ru < q < 1. Every solution of the system (1.1) decreases 
in norm faster than the exponents in (3.2). ne motion x = 0 is asymp- 
totically stable. If among the characteristic numbers pi of the operator 
WO, t,) there exists one whose modulus is greater than one, then the 
motion r = 0 is unstable. Among the solutions of the system (1.1) there 
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will exist some that increase unboundedly when t - CD. 

4. Along with the system (1.1) we shall consider also a “canjugate” 

system of differential equations with an advance in time of the form 

dys W 

pa* (t, y,(@),..., Y,t4)) = $ ~P*~(t+r)9j(7J+$ [ fj*(t-69 6)Yjt-EldE 

j=l l =1 j=l --t 

The functions p . (t), f. (t, fj) are the same as in the system (1.1). 

l’he system of equa8& (4.if plays the part of a conjugate system in 

the theory of linear differential equations with periodic coefficients. 

Let us denote by y(yO(S), t,,, t) the solution of the system (4.11, 

when t < to, with the initial function y,(6), T> 6 w for t = to. In 

the nature of an element of a solution we shall consider a section 

(segnent) of the trajectory on the interval [t + 7, t3 y (ye(S), to, 

t + 6). To the system of equations (4.1) in the function space C_70 of 

continuous functions y(b) on the interval 7> 6 >O with the norm 

IIy(B) 11 sup (lyl(6)lr . . . . [y,(6)], r>6>0), there will correspond 
now a system of “ordinary” differential equations with an operator-type 

right hand side 

dyt (%I 
- = -Pp* (t)&(6) 

dr 
(At < 0) (4.2) 

where 

Y,(~=y(t+#)=(y*(t40), r>%),O,s=t,...,n) 

The operator P*(t) is defined in the following way 

-~*(~)~(0) = 

4/k (%I = 
d% 

when r.), 6 > 0, -Fk*(t,?/1(6)r 1 *. J,(6)), %=O,k=i )...I n 

For a fixed t(t < t,) the element of the solution y,(s) = y(y,(%), 

t,,, t +'6) (T> 6 >O) of the system (4.2) can be considered as an image 

of the element y(6) for some mapping 

Yt (@J = T* 0s to) Yo (6) 0 < 4,) (4.3) 



The theory of linear differential equations 681 

with the operator T*(t, t,); P(t,, t,) = J, where J is the identity 
operator; T*(t, t~)~~(~) = y(y,@), t,,’ t +fi), t < to. i.a us form the 

operator 

where o is the period 

completely continuous 
the operator U(w, t,) 

T* (to - 0, to) = II* (0, to) (4.4) 
of the system (1.1). 'lhe operator u*(o, t,) is 
and plays the same role for the system (4.1) as 
plays for the system (1.1). lhe operators T*(t,t,) 

and vl(t, t,) have the same properties as the operators T and U _ 
mentioned in Sections 1 to 3, except for the direction of decrease of 
time. lhis latter fact is obvious since, if one replaces t by -t, the 
system (4.1) goes over into a system with time delay of the type (1.1). 
In particular, 
p(o, t,) 

to every characteristic number Pj of the operator 
there corresponds a solution of the system (4.1) which can be 

continued over the entire real axis of t (- a,. + m). 

5. Let us introduce the notation 

Here x(B)={X~(@),-%<*<Oo), Y w = {Ye f% -z z @ > 0). 

E$ direct computation we obtain in view of the system (1.2) and (4.2) 
the identity 

(P (t) x(6), y (e), t) + (x (CT),--.P* (q y (a), t) s - 8(+y(~)~ t, (5.2) 

From the identity (5.2) it follows that for every particular solu- 
tion y,(6) of the system (4.1), which is extendable in the direction of 
increasing time t(t >t,), the expression 

@,(@)V Y,(6), 0 =c (5.3) 

will be a first integral of the system (1.1) and (1.2) since for any 
solution ~~(6) of the systems (1.1) the expression in (5.3) will be con- 
stant. From (5.3) we have for the mentioned solutions xt(S) and ~~(8) 
the equation 
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‘Thus, for any characteristic element y(e) of the operator V*(O, to) 
and for any x(e) E C_ve, we have the identity 

(Uh 4 ~P),Y@), t) = (z(W9 o* (9 OYW, 0 (5.4) 

Theorem 5.1. ‘Ihe characteristic numbers {pi) and {pi*> ,of the 
operators U(o, t,) and p(o, t,) are the same (pj = pj , 1 = 1, 2, . ..). 

Proof. Let p* be a characteristic number of the operator U*(o, to). 
We shall show that this number is also a characteristic number of the 
operator U(0, to). For this it is sufficient to show that the equation 

(IJ(o, t(j) - p*I)w(O) = 0 has a nontrivial solution. Let us assume the 
opposite, that the latter operator does not vanish identically for any 

x(6) E C_vg (x(6) different from zero). Suppose that to the number p* 
there corresponds a particular solution of the system (4.1): 

t+4+ 

P +O V (t + 9) 

Making use o.f (5.3) or (5.4). we find that for every x(6) the follow- 
ing condition holds: 

((u (w, to) - p*J) T (a), p*-(‘o+@)‘@ v (#e + 6), to) = 0 (5.5) 

Thus, the operator (U(o, to) - p*J) has for its range of values a 
subspace A of the space C_ve: 

(z (a), pj+-(fo+~@ v (to t 6), to) = 0 (5.6) 

On this subspace A (5.6), we consider the equation 

(U (w, to) - p*J) x (6) = x’ (6) (5.7) 

where x*(e) is an arbitrary element of A. In order that the equation 
(5.7) may be solvable for any r*(6) E A, it is sufficient that the 
homogeneous equation have a unique solution x (8) c 0 on A [41 (Theorem 

2. page . ..). In view of the hypothesis made earlier, the equation (5.7) 
has a single solution and it belongs to A. 

Let us next select an arbitrary element X(&) @ A. We consider the 

element x(e) = z(6) + X(6), where z (6) E A satisfies the equation 

(U (0, fo) - p*J) z (e) = - (U (0, to) - P*J) x (6) 

The last equation is solvable by hypothesis. But then s(6) + X(6) is 
a characteristic element of the operator ff(o, to) corresponding to the 
number p*. Therefore, p* is characteristic number of the operator 
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In an analogous manner one can show that the converse is also true. 

The theorem has thus been proved. 

Furthermore, one can show that the cardinal numbers of the sets of 

roots of the equations 

(U (6.h &I) - PJY z (6) = 0, (u* k% 4)) - PJlkY w = 0 (5.8) 

are the same if k is any positive integer. 

Let us consider the equation 

(U(o, ~0) - PJ) x(fi) =b(W (b(e) EC,,) (5.9) 

where p is a complex number. 

If p is not a characteristic number of the operator No, t,), then 

the equation (5.9) has a unique solution. If p is a characteristic 

number of the operator U(o, t,) then it will also be a characteristic 

number of the operator Il*(o, t,,). Let ~~(61, . . . . y,(6) be independent 

characteristic elements of the operator U(U, t,). Then the necessary 

and sufficient conditions for the solvability of the equation (5.9) are 

the following m relations 

(b (WY Yjm GJ = 0 (/=1,...,m) (5.10) 

We will omit the proof of this assertion. Making use of the last 

stated fact and of (5.4), we obtain the following result. Suppose that 

the operator U(o, t,) has a finite or a denumerable number of character- 

istic numbers pi. 

u*co, 

'Ihen one can construct for the operators U(o, t,) and 

t,) sequences of root elements Xi('), yj(') such that they will 

satisfy the following conditions. 

If ~~(6) is a characteristic element, then 

(5.41) 

If xj(6), xj+1(6), ” ‘, xj+,(S) constitute a Jordan chain (Xj is a 

characteristic element, while x.+ , . . . . x~+~ are adjoining elements) 
for the operator U(o, t,), the: ihe corresponding Jordan chain for the 

conjugate operator U*(O, t,) will be yj('), yj+1(‘~, . . . . Yj+,(~.) and 

the next conditions will hold 
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(xj+k (e), Y, (a), to) = 0 @<is a>i+m) (5.13) 

6. Let us construct N(E) particular solutions of the systems (1.2) 

and (4.2) ~~+~(t t6), ~~+~(t t6) which correspond to the N(E) charac- 

teristic numbers pi satisfying the conditions pi > E (E is any arbi- I I 
trarily small positive number). 

These solutions have the form 

xj+k(t + 6) = Pj (f+8)Ics@j+k(t +6, u(t -be)) 

7Jtik (t + fb) = pj++@)‘“@f+k (t + a, u (t + ‘1) 

t--r a6o) tk&,,,...,m) 

(r>,fl>,O) 
(6.1) 

Here 

@j+k (trg U (t)) = $ uj (t) + - - * + hUj+k-1 (t) + uj+k (t) (6.2) 

'lhe vector-functions uj(t), . . . . uj+k(t), vi(t), . . . . ui+h(t) have 

the period o. 

If the adjoint elements do not correspond to the Pj, then k = 0 in 

the solutions (6.1); if m of the adjoint elements correspond to the Pi' 

then k = 0, 1, . . . . m in the formulas (6.1). If the relation (5.11) 

holds, then we have 

If the relations (5.12) and (5.13) are valid, then we obtain 

We shall represent an arbitrary element x(a) of the space C_T,, by 
means of the formula 

N(c) 

X (+) = x U@j (8, U (1 + *)) pit’+@’ ‘O + zf (e) (6.6) 
j=l 

where 

Uj = (X ($), pj-( f”+8)’ w @j (8, U (t + a)), t) 
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if the formula (6.3) holds for the numbers j, and 

Uj+k = (Z (@)v pj-~f~~"~j~~-* (@, V (t + *))s t) (k = 0,. . e, m) (6.7) 

if the fornmlas (6.4) and (6.5) apply for the elements numbered from j 

to j + m. Then z,(6) in (6.6) satisfies the conditions 

fj (zf (8)) s (rf (*) Pj4’“@j (*9 v (t + 6)), Q = O o’= I,..., N'(e)) (6.8) 

It is not difficult to show that the representation (6.6) determines 

the al, . . . , aN, z,(e) in a unique way. 

Evaluating the expression dx, (@)/& - f’(t)%, (6)) and assnming that 

r(6) has the representation (6.6), we obtain a system of differential 

equations in the variables aI, . . . , as, z(#), which corresponds to the 

system (1.2) 

fi=l,...s M(e)) (6.9) 

y = P (t) 21 (@), fj[zf(6)]==0 ti-k....NW) (6.10) 

In equation (6.9) the last term aj+l will be absent if there are no 

adjoint elements that correspond to the element j; if to the jth element 

there correspond m adjoint ones, then the term o . 
I+f 

will appear in all 

equations with numbers from j to j + RO - 1, and It will not enter into 

the equation with the number j f III. 

It is not difficult to show that if z,(e) satisfies the conditions 

(6.8)) then the element ~zt(#~/~~ - P( t)zt (tM will also belong to the 

subspace (6.8). 

If one constructs the operator U(o, t,) on the subspace (6.8) for 

the equation (6.10), then one can easily convince oneself that its 

spectrum will contain all characteristic numbers pj of the operator 

U(0, t,) on C_.ro, exce t the firstN(a)oj (j = 1, ..,, N(E)), which 

satisfy the condition P pj 1 > E. Therefore, the norm of every solution 

tt(@ of the equation (6.10) will decrease faster than the exponents 

L exp t/o log E, where E < 1, while L is some positive number. 

Thus, we have arrived at the following result. In the space C-v0 one 

~a~tf~~,~ periodically shifting ~-di~nsional basis (a(@, u( t + f!)) 

pj 
0 1 such that in the N-dimensional space determined by this 

basis, the system (1.2) will describe an N-dimensional system of 
ordinary differential equations with constant coefficients (6.9). 

Hereby, the indicated motion of the system (1.2)) having the form of 
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that treated by Floquet, will be an asymptotical solution, when 1 -. m, 

of the system (1.2) in the entire space C_ ,,. l’he vanishing complement 
t,(s) of the finite-dimensional motion {aj J to the total motion ~~(6) 
will remain for all t > to in the linear subspace determined by the 

condition (6.8). 

Thus the theory of Floquet for systems with time lag will always be 

valid in the asymptotic sense. 

We note that the system of the root elements x,(6), generally speak- 

ing, does not possess the property of completeness. In the work 151, 
Zamerkin gave an example in which an equation with periodic coefficients 

and with time lag has only one root element. This equation has the form 

0 

- = P (0 a (t - %I, dx (1) 
dt s 

P (Q, d5 = 0, P (t + 4 = P 0) 
--+ 

It must, however, be recognized that the presence of a denumerable 

system of root elements for an equation of the type (1.1) is rather the 
rule than the exception. One can convince oneself of this through the 
consideration of systems with constant coefficients, or of systems with 
periodic coefficients which are near to constant ones. 
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