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Considered is a system of linear differential equations with periodic
coefficients and with after-effect (with time lag). The study of this
type of systems is of interest in particular to persons working with

automatic control systems.

The investigation is based on methods for treating equations with
time lag in the function space C_To of continuous functions proposed by
Krasovskii [1,2].

It is shown that the spectrum of the operator of the monodrome
U(o, to) does not depend on to and determines the asymptotic stability
or instability of the motion x = 0. A conjugate system of differential
equations with time advance and with periodic coefficients is con-
structed. An explicit expression is given for the first integrals of
the considered system (1.1) by means of the solution of the conjugate
system. An explanation is given for the connection between the spectra
of the operators of the monodrome of the original and conjugate systems;
an analytic form of the characteristic vectors and particular solutions
of these systems is obtained, which can be continued over the entire
time-axis from - ® to + o,

It is shown that in the space of continuous functions C—To' in which
the solutions of the system (1.1) are considered, there can be found a
finite-dimensional basis, periodic in t, on which the motion of the
system (1.1) is described by a system of ordinary differential equations
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The theory of linear differential equations 615

with constant coefficients. In the complementary subspace, the norm of
every solution decreases as an exponential function with sufficiently
high exponent becsause the spectral radius of the operator of the mono-
drome can be made as small as one pleases, The last circumstance has
application in the theory of the stability of oscillations, as well as
in problems on optimal control in systems with delay.

1. Let us consider a system of differential equations with delay of
the type

dz, (1)
5 = Fy(t, 2y ¢+ 0),..., 200+ ) (1.1)

Here
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The periodic continuous functions p i"(t} of time are of period w.
The functions f .(t, §) are continuous in t and in the region < EX,
- o <t <+ o; they are periodic in t of period @; 75 is the delay of
the system.

Let us denote by x(¢(®), t,, t) the solution of the system (1.1)
with the initial function ¢(¥) = {tps('ﬁ‘), s=1, ..., n; - 1<1‘)<O}.

A segment of the trajectory x{o(0), ty, t +8) will be considered
to be an element of the solution of the system (1.1). Thus, to the
system of equations (1.1) in the function space C_., of continuous
functions on the interval (- 7, 0) with norm || x(®) “_.m = Sup(lxl(ﬁ)l.
cees !xn(ﬁ)l, (- 7 ¥ 0) there will correspond a system of "ordinary"
differential equations with an operator type right-hand side

dz, (B )
2O Pon® >0 (1.2)

where x () = x(t +98) = {xs(t +9), s=1, ..., n}, while the operator
P(t) is defined in the following way
PBz(®) = {1.3)
dzy ()
= {W when v <8 <0, Fi(t, 2, (9),..., 22 (B)) when 8 =0, k=1,..., "}

For a fixed t > t,, an element of the solution xt(ﬁ) = 2(9(D), t,,

t +9) can be considered to be an image of the element ¢(3) & C_,
under some mapping

20 (®) =T (t, t) ¢ (8) (t>0) (1.4)
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with the operator T(t, t)); T(t,, t,) = J is the identity operator
Jz (@) =2z(9), T t)e(0) =2z(@(9),%,t+ 9
We shall note some basic properties of the operator T(t, t,).

1. The operator T(t, t;) is linear.

2. The operator T(t, t;) has the property of a semi-group. For every
t and t; it is true that

T+ tut) =T+, Tt (t1>0, t>1) (1.5)
3. The operator T(t, to) satisfies the condition
T+ o, t) =T(t) T (L + 0, L) t>t) (1.6)

Since the system (1.2) depends in a periodic way on time t, it
follows that

zl+o(ﬂ) = z((p (0)1 te, t + @ + 0)

is-a solution of the system (1.2), and, when ¥ = 0, also of the system
(1.1).

But then one can find an element ¢*(#) of the space C_,, such that
Xopp = g* (D), t,, t + ), x(e0®, ty, to to+8) = (). We thus
have

P*@)=T(t+0,t)9(®), zna=T( t)e*(®)
Tne(B) =T (t 4+ 0, ) 9 (9)

This implies (1.6).

4. Setting t; = @ in (1.5) and taking into consideration (1.6), we
obtain

T, t)T (ot 0 t) =T+, )T, to) (1.7)

In view of (1.5) and (1.7) we have also

The (N =T(t+ o0, ) () =T+ 0, )T )9 (®) =
=T(t t) T (tp+ 0, )9 (8) =T (¢, t) T (to + 0, o) T2 (2, to) 2: (D)
T71(t, to) 2:(9) =@ ()
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Whence,
Toe (B) = T, t) T (t, 4o, t,) T, t,) z:(0) (1.8)

5. Let t = no + t*, t, <t ﬁ;to + @, where n is a positive integer.
Applying formula (1.6) n times, we obtain

T(t, t)) =T (t*, to) T (ty + 0, &) (1.9)

The operator T(t, + w, ty) will play an important role in what
follows.* Below we shall denote this operator by the symbol U(e, t,).

2. The operator U(w, t, ) = TKt ta t ) is completely continuous on
the linear normed space C of contlnuous functions because it is
bounded in view of (27.12) Yl], and it transforms continuous functions
2(9) C_, into uniformly continuous functions (11, page 226, Vol.25,
No.1l). Let us consider the equation

(U (0, t) — pl)z(8) =0 (2.9

Here J is the identity operator, p is a complex number, and
x(® & C_;,. Since the operator U(e, t,) is completely continuous,
equation (2.1) may have non-trivial solutions for a denumerable set of
values of p.. These values are called characteristic numbers of the
operator U(a, t o). For each P; equation (2.1) has a finite number n; of
linearly 1ndependent characteristic vectors xJ)(8) of the operator
U(e, t,). There exists a number n,, which is independent of the number
7, such that n; n,. The characteristic numbers p; (j = - )y
and the point p = 0 constitute the spectrum of the operator U(w, ty).
In the region pf >r (where r is an arbitrary positive number) there

exist only a finite number of characteristic numbers of the operator
Uw, to ) (see [4]).

Theorem 2.1. The spectrum {p } of the operator U(w, t,) does not de-
pend on t;. The characteristic vectors x (J)(ﬁO (3)(ﬁ) of the
0

operators U(w, t) and U(e, to) that correspond to the characteristic
number p, are connected by the relations

2 (8) = T (t, 1) 2 (8), 2 (B) = T2(t, 1) 2 (8)  (2.2)

and xt(f)({ﬂ has the form

* This operator was used by Iu.M. Repin for the investigation of equa-
tions with constant coefficients [7].



678 S.N. Shimanov

H+e
2 (8) = p, © u;(t + 9) (2.3)

where u.(t + ©#) is a periodic véctor-function of period @ in t; the
function x (J)(ﬂD satisfies the system (1.2) not only when t > t, but
also when t <t,

Proof. Let xt;})(ﬁ) be a characteristic vector of the operator

U(w, ty) (t, is arbitrary) which corresponds to the number Pj. The
following identity is valid

U (0, 1) — pJ) 7, P (8) = 0 (2.4)

Applying the operator t(t¢, to), t > ty, to the left and right sides
of the identity (2.4), and taking into account (1.7), we obtain the
identity

U, 0T (¢t to) 9 @) =p,T (1, to) 2,9 (B) (2.5)

From (2.5) it follows that p. will be a characteristic number, and
x (1’(6) = T(t, t 0)% 01 () a characteristic vector, also of the

operator U(w, ¢t), t > t,. The function

o
2@ (8) =T (& to) z"(9)

with ¢t > ty, Will also be a solution of the system (1.2). Taking into
account (1.7) and (1.8) we obtain from (2.5)

2, ®) = p; 2 0) (> t) (2.6)

Formila (2.6) implies formula (2.3) when t -~ to. It is, however,
easy to notice that ”t(] (9), determined by the formula (2.3) when ¢ < tg,

also satisfies the system (2 1). Assuming that ¢, = ¢ + lo > ty (l an
integer) we find that =z, (f (8) satisfies the system (1.2), where ¢ is

replaced by t;. Taking into account the periodicity of P(t) and

x, () B = x +§m % = pjlm ) (), one can verify that the function
xt*f)(ﬁ), determined by formula (2.3), satisfies equation (1.2) when
t <t
Let us suppose that xtl‘{ﬁ) is a characteristic vector, p* is a8

characteristic number of the operator U(w, t;), while xt(ﬁ) is a solu-~
tion of the system (1.2) with the initial function xtl(ﬁ) at the time

ty. This solution can be continued over the entire real axis t. Hence
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one can find a function x, *(#) such that xto‘(ﬁ) = T'l(t, to)xt‘(ﬁ).
0
Taking into account the last formula and (1.7) we obtain, from the
identity U(w, t))=, " = p*z, (9), the identity U(o, ty)x, () =
. s 1 1 0
p xto .
Thus, the spectrum of the operator U(w, to) is independent of ty
and the formulas (2.2) and (2.3) are valid.

The system of equations (1.2) has in general a denumerable number of
particular solutions defined on the entire axis of time t. Let us assume
that p = p* is such that the equation

(U0, t) — p*)2(® =0

has a nontrivial solution. Then the system of equations (1.2) will
possess a solution of the form

91 t ﬁk—2
GO et 0+ LET w9+ a9
where u (t +®), ..., u,(t +8) are vector-functions of period @ in t.

3. We suppose now that all the characteristic numbers p satisfy the
condition Ip.l < 1. It is known [3] that the spectral radius Ty of the
operator U(w, t;) is determined by the formula

ry=lm|U™ (@, t) ['™ on [—<0] whenn— oo

Therefore, there exists a number [ such that

HW@»mﬁ%=q<1 on [— 7, 0]

Let ||7Kt, to) “ < K on the interval [~ 7, 0] when to-sgt ity wl,
t =olo+ t* t, t* <ty + ol. Then it follows from (1.9) that

7@ I<ITE ) (U (o, ) <Kge (3.1)
The following inequality now applies

A B N L (3.2)
for all ¢t > tor Ty < g < 1. Every solution of the system (1.1) decreases
in norm faster than the exponents in (3.2). The motion x = 0 is asymp-
totically stable. If among the characteristic numbers p. of the operator
U o, to) there exists one whose modulus is greater than one, then the
motion x = 0 is unstable. Among the solutions of the system (1.1) there
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will exist some that increase unboundedly when t ~ w,

4. Along with the system (1.1) we shall consider also a "conjugate"
system of differential equations with an advance in time of the form

d
y-;,(t) =—F*Cypnt+9,...,y9,0t+9) G=1,...,m (41)

Here,

n k& n 0
F&(t 51 (8) 9, 0) = 2 D, 4Dy + 2 § e =2, By, (B at

j=1 €==1 joml -t

The functions psjo(t), fi(t, §) are the same as in the system (1.1).
The system of equations (4.1) plays the part of a conjugate system in

the theory of linear differential equations with periodic coefficients.

Let us denote by y(y,(8), t,, t) the solution of the system (4.1),
when t < t,, with the initial function y (8), 7> 9 >0 for t = ¢;,. In
the nature of an element of a solution we shall consider a section
(segment) of the trajectory on the interval [t + 7, t] y (yo(®), ¢t,,

t +9). To the system of equations (4.1) in the function space C_., of
continuous functions y(#) on the interval 1> € »0 with the norm
'fy(ﬁ? I sup (iyl(ﬁ)l, ey lyn(ﬁ)‘, 7> ¢ >0), there will correspond
now a system of "ordinary" differential equations with an operator-type
right hand side

ay, (9

— = — P*(t)y,(9) (At <0) (4.2)

where
y:(m=y(t+ﬁ)={y,(t+ﬁ), 1}’&};.0,3_—.:,..., H}

The operator P*(t) is defined in the following way

—P* )y () =

={d”;;0’ hen 2930, — F (1, 33 (8), - . ., 9, (B), 0=0.k=1,....n]

For a fixed t(t < t;) the element of the solution y, (§) = y(y,(8),
tg, t +8) (v> € 30) of the system (4.2) can be considered as an image
of the element y(¥) for some mapping

¥ () =T*(t, t)ye(®) <ty (4.3)
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with the operator T*(t, ¢ ) 7*(to, t ) J, where J is the identity
operator; T*(t, tg)y,(§) = y(y, (), to, t +-ﬁ) t < ty. Let us form the
operator

T* (1, — 0, ty) = U*(w, t,) (4.4)

where @ is the period of the system (1.1). The operator U*(w, t,) is
completely continuous and plays the same role for the system (4 1) as
the operator U(e, t,) plays for the system (1.1). The operators T*(t,t)
and U*(¢t, t,) have the same properties as the operators T and U
mentioned 1n Sections 1 to 3, except for the direction of decrease of
time. This latter fact is obvious since, if one replaces t by —t, the
system (4.1) goes over into a system with time delay of the type (1.1).
In particular, to every characteristic number p. of the operator

U*(w, t,) there corresponds a solution of the system (4.1) which can be
continued over the entire real axis of t (- o, + w),

5. Let us introduce the notation

n n k 4

(z(9), ¥ (9), 1) —2} 20 y;0+ 2 2 2 (2@ -y @ py, ¢+ B —

= j=1l=10=1 4
J (5.1)
-3 ,2 VI § 2(E + 0)y; (8 (& + ¢, 0)dE ] do
J=1l=) -t =

Here z@®)={z,(8), —t<¥<0, vy @) ={, @), v>9>0.

By direct computation we obtain in view of the system (1.2) and (4.2)
the identity

(P (1) z(®), y(8), )+ (z(8),—P* By (9), n = — TEDIOD (55

From the identity (5.2) it follows that for every particular solu-
tion yt(ﬁ) of the system (4.1), which is extendable in the direction of
increasing time (¢ ;bt ), the expression

(zg (0)' Y, (‘G)’ t) =C (53)

will be a first integral of the system (1.1) and (1.2) since for any
solution x,(8) of the systems (1.1) the expression in (5.3) will be con-

stant. From (5.3) we have for the mentioned solutions x ((9) and y, (§)
the equation

(Ttre (D), Yire (9),8) — (z: (), Yiie (9), )= (z: (), Y, 9,6 — (z:(9), Yia (9),1)
(U (0, ) 2:(9), o7y, (8), 1) = (z:(8), U* (0, 1) p7ly, (9}, ?)
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Thus, for any characteristic element y(8) of the operator U*(w, t,)
and for any x(8) & C_,,, we have the identity

(U (@, ) 2(8),y (8), 1) = (z(8), U* (0, ) y(9), ) (5.4)

Theorem 5.1. The characteristic numbers {p .} and {p; *} of the

operators U(e, t;) and U*(w, t,) are the same (pJ P =1, 2, ...).

Proof. Let p* be a characteristic number of the operator U*(w, ty).
We shall show that this number is also a characteristic number of the
operator U(w, to). For this it is sufficient to show that the equation
(U(w, ty) — p*Dx(®) = 0 has a nontrivial solution. Let us assume the
opposite, that the latter operator does not vanish identically for any
zx(9) € C To(z(ﬁ) different from zero). Suppose that to the number p*
there corresponds a particular solution of the system (4.1):

t+8
p* ¢ p(t49)
Making use of (5.3) or (5.4), we find that for every x(&) the follow-
ing condition holds:

((u (@, t0) — p*J) z (8), p* o+ p (39 + 0), 1) = 0 (5.5)

Thus, the operator (U(w, to) — p*J) has for its range of values a
subspace A of the space C_.,

(z @), o] Wy (29 4 ), t) = 0 (5.6)

On this subspace A (5.6), we consider the equation
(U (@, to) — p*J) 2 (8) = 2 (§) (5.7

where x*(9§) is an arbitrary element of A. In order that the equation
(5.7) may be solvable for any x*(#) & A, it is sufficient that the
homogeneous equation have a unique soiution x(8) = 0 on A (4] (Theorem
2, page ...). In view of the hypothesis made earlier, the equation (5.7)
has a single solution and it belongs to A.

Let us next select an arbitrary element X(&) ¢ A. We consider the
element z(9) = z2(®) + X(§), where z(8#) & A satisfies the equation

(U (@, to) — p*J) 2 (8) = — (U {0, to) — p*/) X (9)
The last equation is solvable by hypothesis. But then z(#) + X(§) is

a characteristic element of the operator U(w, ty) corresponding to the
number p*. Therefore, p* is characteristic number of the operator
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U(w, to)-

In an analogous manner one can show that the converse is also true.
The theorem has thus been proved.

Furthermore, one can show that the cardinal numbers of the sets of
roots of the equations

(U (0,t) — pJ) 2 (8) =0, (U* (@, t) —p/Y'y @ =0 (5.8

are the same if k is any positive integer.

Let us consider the equation
(U (o, 1) —pJ) z(8) = b (8) (B EC ) (5.9)

where p 1s a complex number.

If p is not a characteristic number of the operator U(w, ty), then
the equation (5.9) has a unique solution. If p is a characteristic
number of the operator U(w, t,) then it will also be a characteristic
number of the operator I*(w, t;). Let y,(8), ..., y,(3) be independent
characteristic elements of the operator U(w, t,). Then the necessary
and sufficient conditions for the solvability of the equation (5.9) are
the following m relations

(b (8), y;(0), ) =0 Gi=1,...,m (5.10)

We will omit the proof of this assertion. Making use of the last
stated fact and of (5.4), we obtain the following result. Suppose that
the operator U(o, to) has a finite or a denumerable number of character-
istic numbers p.. Then one can construct for the operators U(w, t,) and
U*(w, t,) sequences of root elements xj(ﬂ), yj(ﬁ) such that they will
satisfy the following conditions.

If xj(ﬁ) is a characteristic element, then

(@ (8), 9,8, ) = {5 17° (5.41)

If xj(ﬁ), xj+1(ﬁ), cee, xj+m(ﬁ) constitute a Jordan chain (xj is a
characteristic element, while x..,, ..., x., are adjoining elements)
for the operator U(w, t,), then the corresponding Jordan chain for the
conjugate operator U*(w, t,) will be yj(ﬁ), yj+1(ﬁ), cee, yj+m(ﬁ) and
the next conditions will hold
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@ @), Yy @ 0 ={ 2, ((SiSn) (5.12)

(T (8), y,(0), 2) =0 (6<ji6>j+m) (5.13)

6. Let us construct N(e) particular solutions of the systems (1.2)
and (4.2) xj+k(t +4), ¥ it +{) which correspond to the N(e) charac-
.. IR .. . .
teristic numbers p. satisfying the conditions |pj| > ¢ (¢ is any arbi-

trarily small positive number).

These solutions have the form

T (t +0) =p /Dt + 8, u(t+9) (—r<9<0)

=0,1,..., m 6.1
Yiek t+9) = p,'_(tw)/wd)ﬂk t+90, v@e+9) (T>0>0) (k=01 ) (6.1)

Here

Ope b (0) = 25 0y 0+ 4 b @) + 2k ) (6.2)

The Yector-functions uj(t), vees uj+k(t), vj(t), vy ”j+k(t) have
the period .

If the adjoint elements do not correspond to the p;, then k =0 in
the solutions (6.1); if m of the adjoint elements correspond to the P
then k =0, 1, ..., m in the formulas (6.1). If the relation (5.11)
holds, then we have

(@38, 2t +8), D (®, vt +0), =]y 133 (6.3)
If the relations (5.12) and (5.13) are valid, then we obtain

(@pur (0, 4 (¢ +9)), Dpms (@, 2 + 8,0 ={¢ IZ} @ k=0....,m (6.4

(Pix (B, u(t +9), Ojs (8,2 +9),0)=0 c&j,6>i+m (6.5)

We shall represent an arbitrary element x(#) of the space C_., by
means of the formula
N (¢)
z(0) = X a;®;(®, u(t+0))p /o 4 2(8) (6.6)
i=t

where

a; = (z(8), p; W @;(3, v(t + 9)), 1)
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if the formla (6.3) holds for the numbers j, and
a5k = (2 (9), p; O/ oD (B, v(¢ + B)), 1) (k=0,...,m) (6.7)

if the formulas (6.4) and (6.5) apply for the elements numbered from j
to j + m. Then z,(8) in (6.6) satisfies the conditions

fi(2(8) = (2(8) p; 2/ @;(B, v(t +9)), 1) =0 G=1...,N@) (6.8)

It is not difficult to show that the representation (6.6) detemmines
the a;, ..., ay, z,(8) in a unique way.

Evaluating the expression dx,(®)/dt - P(t)x (), and assuming that
z(0) has the representation (6.6), we obtain a system of differential
equations in the variables a;, ..., ay, z(8), which corresponds to the
system (1.2)

a =-£-a,-logp5‘- Q41 G=1,..., N(&) 6.9)

&
f%?l=PGMAm, filz(®1=0 (=1...,N(E) (6.10)

In equation (6.9) the last term a4 will be absent if there are no
adjoint elements that correspond to the element j; if to the jth element
there correspond m adjoint ones, then the term a4, will appear in all
equations with numbers from j to j + m — 1, and 1t will not enter into
the equation with the number j + m.

It is not difficult to show that if zt(ﬁﬁ satisfies the conditions
(6.8), then the element dz,(8)/dt - P(t)z,(#) will also belong to the
subspace (6.8).

If one constructs the operator U(w, t;) on the subspace (6.8) for
the equation (6.10), then one can easily convince oneself that its
spectrum will contain all characteristic numbers p. of the operator
Ule, ty) on C_,,, except the first N(e)pj (j =1, ..., N(e)), which
satisfy the condition Tp-l;> ¢. Therefore, the norm of every solution
ztoﬁ) of the equation (6.10) will decrease faster than the exponents
L exp t/w log €, where & < 1, while L is some positive number.

Thus, we have arrived at the following result. In the space C__, one
can find a periodically shifting N-dimensional basis {0(®, u(t +9))
pj(t0+9’/°} such that in the N-dimensional space determined by this
basis, the system (1.2) will describe an N-dimensional system of
ordinary differential equations with constant coefficients (6.9).

Hereby, the indicated motion of the system (1.2), having the form of
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that treated by Floquet, will be an asymptotical solution, when t - o,
of the system (1.2) in the entire space C__,. The vanishing complement
z,(8) of the finite-dimensional motion {aj to the total motion x,(%)
will remain for all t > t, in the linear subspace determined by the
condition (6.8).

Thus the theory of Floquet for systems with time lag will always be
valid in the asymptotic sense.

We note that the system of the root elements xo(ﬂ), generally speak-
ing, does not possess the property of completeness. In the work [5],
Zamerkin gave an example in which an equation with periodic coefficients
and with time lag has only one root element. This equation has the form

0
EO—pwat—u §r@A=0  pe+0=p0
—-T
It must, however, be recognized that the presence of a denumerable

system of root elements for an equation of the type (1.1) is rather the
rule than the exception. One can convince oneself of this through the
consideration of systems with constant coefficients, or of systems with
periodic coefficients which are near to constant ones.
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